Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Daniel Lorono-Gonzalez

Departamento de Química, Universidad de Oriente, Cumaná, Estado Sucre, Apartado Postal 233, Venezuela

Correspondence e-mail:
dlorono@sucre.udo.edu.ve

## Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.035$
$\omega R$ factor $=0.070$
Data-to-parameter ratio $=19.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## Benzyldiethylammonium chloride

The title compound, $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}^{+} \cdot \mathrm{Cl}^{-}$, crystallizes in a noncentrosymmetric polar space group and possesess normal geometric parameters. The crystal structure analysis reveals a discrete ionic species, for which the packing is consolidated by an $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, resulting in a two-dimensional network.

## Comment

The reactivity of (phenylthiomethyl)amines has received considerable attention, not only with regard to their coordination chemistry but also for their use in synthetic organic chemistry (Screttas \& Screttas, 1978; Yus, 1996; Gómez et al., 1997; Foubelo et al., 1997). The complexing reagent (lithiomethyl)amine can be obtained from the reduction of (phenylthiomethyl)amines with a solution of lithium naphthalenide $\left(\mathrm{LiC}_{10} \mathrm{H}_{8}\right)$ (Gómez et al., 1997). In an attempted reaction of the corresponding (lithiomethyl)amine, a hexane solution of this compound was treated at 195 K with a hexane solution of $\mathrm{Ph}_{2} \mathrm{BCl}$, resulting in the formation of benzyl $-N, N^{\prime}$ diethylammonium chloride, (I) (Fig. 1), as a side-product.


The asymmetric unit in the non-centrosymmetric polar space group, $\mathrm{Pna2}_{1}$, of (I) contains only one ion pair. All the geometric parameters for the cation lie within their expected ranges (Allen et al., 1987). The tetrahedrally coordinated N atom has typical bond lengths and angles (Table 1).

As well as coulombic and van der Waals forces, the crystal packing in (I) appears to be controlled by several different intermolecular interactions (Table 2). The most clearcut is an $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond that links adjacent ionic components, while a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds results in parallel chains of ions in the $b$-axis direction (Fig. 2). Within a chain, adjacent cations, related by a $b$-glide plane, are enantiomorphous. In addition, Fig. 2 shows that all the chains propagate in the same direction, i.e. all the $\mathrm{N}-\mathrm{H}$ bonds point the same way. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds lead to greater complexity than the rather simple motif


Figure 1
A view of (I), showing the atom-labelling scheme and the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond (dashed lines). Displacement ellipsoids are shown at the $50 \%$ probability level.


Figure 2
A view of part of the crystal structure of (I), showing the formation of hydrogen-bonded chains along the [010] direction. H atoms not involved in the interactions shown have been omitted. [Symmetry codes: (i) $x, y-$ $1, z$; (ii) $\frac{3}{2}-x, y-\frac{1}{2}, z-\frac{1}{2}$; (iii) $\frac{3}{2}-x, y-\frac{3}{2}, z-\frac{1}{2}$; (iv) $x, 1+y, z$.]
generated by the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds alone. The $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bond involving C 10 , in combination with the other hydrogen bonds, generates a sheet parallel to (201). The combination of the [010] chain and the (201) sheet make it sufficient to generate a continuous two-dimensional framework.

## Experimental

For the preparation of compound (I), a freshly prepared solution of lithium naphthalenide from lithium granules $(0.070 \mathrm{~g}, 9.98 \mathrm{mmol})$ and naphthalene ( $1.279 \mathrm{~g}, 9.98 \mathrm{mmol}$ ) in tetrahydrofuran $(25 \mathrm{ml})$ at 195 K was added to (phenylthiomethyl)amine ( $1.946 \mathrm{~g}, 9.98 \mathrm{mmol}$ ) precooled to the same temperature. After 30 min a solution of diphenylboron chloride ( $1.000 \mathrm{~g}, 4.99 \mathrm{mmol}$ ) in hexane ( 10 ml ) was added dropwise over a period of 30 min . The mixture was warmed to
room temperature and stirred for 24 h . The mixture was then filtered, and the solvent and volatiles were removed under vacuum. The remaining naphthalene was removed by steam distillation under vacuum at 333 K . The main product of (I) was extracted with diethyl ether (two portions of 20 ml ). A few days later at room temperature, some well formed colourless needle-shaped crystals of (I) were obtained. CHN analysis of a handpicked sample of (I) found: C 67.47, H 8.09, N $6.82 \%$; calculated: C 66.15, H 9.08, N $7.01 \%$.

## Crystal data

$\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{~N}^{+} . \mathrm{Cl}^{-}$
$M_{r}=199.71$
Orthorhombic, Pna ${ }_{1}$
$a=20.366$ (3) A
$b=7.0174$ (9) $\AA$
$c=8.0292$ (11) $\AA$
$V=1147.5(3) \AA^{3}$

## Data collection

Bruker SMART APEX CCD
diffractometer with an Oxford
Cryosystems low-temperature device
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.884, T_{\max }=1.000$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.156 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.29 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.18 \times 0.06 \times 0.03 \mathrm{~mm}
\end{aligned}
$$

6285 measured reflections 2335 independent reflections 1258 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=26.4^{\circ}$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.070$
$S=0.99$
2335 reflections
123 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0314 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.31 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.15 \mathrm{e}^{-3}$
Absolute structure: Flack (1983), 1069 Friedel pairs
Flack parameter: 0.09 (5)

Table 1
Selected geometric parameters ( $\AA{ }^{\circ}{ }^{\circ}$ ).

| $\mathrm{C} 1-\mathrm{N} 1$ | $1.512(2)$ | $\mathrm{C} 10-\mathrm{N} 1$ | $1.4995(18)$ |
| :--- | ---: | :--- | ---: |
| $\mathrm{C} 8-\mathrm{N} 1$ | $1.492(2)$ | $\mathrm{N} 1-\mathrm{H} 1$ | $0.869(11)$ |
|  |  |  |  |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$ | $114.45(12)$ | $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1$ | $111.84(11)$ |
| $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$ | $113.64(13)$ | $\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 1$ | $109.71(12)$ |
| $\mathrm{N} 1-\mathrm{C} 8-\mathrm{H} 82$ | 108.8 | $\mathrm{C} 8-\mathrm{N} 1-\mathrm{H} 1$ | $108.2(12)$ |
| $\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11$ | $113.92(13)$ | $\mathrm{C} 10-\mathrm{N} 1-\mathrm{H} 1$ | $107.5(9)$ |
| $\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 10$ | $111.96(14)$ | $\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$ | $107.4(14)$ |
|  |  |  |  |
| $\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 10$ | $68.63(16)$ | $\mathrm{C} 11-\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 1$ | $68.22(15)$ |
| $\mathrm{C} 9-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 1$ | $-167.77(12)$ | $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 8$ | $53.45(16)$ |
| $\mathrm{C} 11-\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 8$ | $-166.99(12)$ | $\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10$ | $178.31(12)$ |

Table 2
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1$ | $0.869(11)$ | $2.236(12)$ | $3.1036(10)$ | $175.8(16)$ |
| $\mathrm{C} 1-\mathrm{H} 12 \cdots \mathrm{Cl}^{\mathrm{i}}$ | 0.97 | 2.78 | $3.6505(16)$ | 150 |
| $\mathrm{C} 10-\mathrm{H} 102 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$ | 0.97 | 2.77 | $3.6815(16)$ | 157 |

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2}, z-\frac{1}{2}$.

The H atom attached to the N atom was located in a difference Fourier synthesis and its positional parameters were refined. Other H atoms were included in the refinement at calculated positions, in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances between 0.93 and $0.97 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set equal to 1.5 (methyl H atoms) or 1.2 (other H atoms) times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELXL97.

DJLG thanks the Universidad de Oriente (UDO) for funding a PhD studentship.

## References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2001). SMART. Version 5.625. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2002). SAINT. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Foubelo, F., Guterrez, A. \& Yus, M. (1997). Tetrahedron Lett. 38, 4837-4840.
Gómez, C., Huerta, F. \& Yus, M. (1997). Tetrahedron Lett. 38, 687-690.
Screttas, C. G. \& Screttas, M. M. (1978). J. Org. Chem. 43, 1064-1071.
Sheldrick, G. M. (1994). SHELXTL. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). SADABS. Version 2.06. Uiversity of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yus, M. (1996). Chem. Soc. Rev. 25, 155-161.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

